
MPL: a multiprecision Matlab-like environment

Walter Schreppers, Franky Backeljauw, and Annie Cuyt

University of Antwerp (CMI)
Department of Mathematics and Computer Science

Middelheimlaan 1, B-2020 Antwerpen, Belgium
{walter.schreppers,franky.backeljauw,annie.cuyt}@ua.ac.be

Abstract. A number of generic tools, some developed by the authors,
some developed in cooperation with other teams and others available
freely, are combined into an environment, called MPL from Multi Pre-
cision Lab, which offers a cross-platform variable precision alternative
to Matlab. Among the tools we mention for instance our C/C++ pre-
compiler for type conversion, the GMP arithmetic library complemented
with our own IEEE-854 compliant multi-radix multiprecision MpIeee li-
brary, the Boost matrix library, our own Matlab parser, the libraries
FFCall and GNU Libtool. The functionality of the well-known Mat-
lab toolboxes is available through the multiprecision equivalent of one’s
library of choice, generated using the same tools. We mention, among
others, GSL, Numerical Recipes, an automatic differentiation toolkit [1],
a hybrid polynomial solver [2] and so on.

1 Introduction

While symbolic computing environments have the tendency to also support vari-
able precision numeric routines besides symbolic and exact arithmetic, popular
numeric programming environments such as Matlab usually do not offer any
higher precisions besides the standard hardware precisions.

Since predictions, based on the growth in the size of mathematical models
solved as the memory and speed of computers increase, suggest that floating-
point arithmetic with unit roundoff of the order of 10−32 is needed for some
applications on future supercomputers, we want to investigate the possibility to
offer high precision floating-point and exact rational arithmetic in a Matlab-like
environment.

Furthermore, numeric code that has passed an experimental stage, is often
run in optimized and compiled form and not from within a computing environ-
ment. This feature is supported as well.

In the subsequent sections we discuss the building blocks that constitute
the MPL environment. The sections 2, 3, 5, 7, 8, and 9 all concern packages
developed by ourselves in the past few years.

2 High precision arithmetic

In our context the notion high precision varies from more than 64 digits of
binary precision to infinite precision rational arithmetic. A finite precision radix
β arithmetic implementation (β = 2i or β = 10j) is preferably fully IEEE-854
compliant. Such an implementation offers an additional benefit compared to the
symbolic computing environments which do not comply with the floating-point
standard(s).

Our infinite precision C++ classes Rational and BigInt for rational and
big integer arithmetic are based on the well-known GMP library [3]. For mul-
tiprecision floating-point arithmetic, a number of libraries have been developed
in the past decade. We refer among others to MpIeee [4], CLN [5], FMLIB [6],
MPFR [7] and MPFUN [8].

MpIeee is a C++ class that offers fully IEEE-854 compliant, multi-radix and
variable precision floating-point aritmetic. Its implementation allows to encap-
sulate the data structure together with the routines to create, manipulate and
destroy this structure, thus offering an easy-to-use interface to the concept it
implements. Furthermore, the possibility of operator overloading allows the use
of the ordinary mathematical operators (such as +, −, /, ×,

√
, but also sin,

cos, abs, . . .).
Operators have a big impact on the overall runtime performance, as their

usage often involves the creation of several temporary objects. These tempo-
raries come from the fact that the operator that is being called, does not know
where the result will be stored. Instead, it creates a temporary object to store
the result. To actually return the result, yet another (unnamed) temporary ob-
ject is created, which is nothing more than an implicit copy of the result. It is
needed because simply returning a reference to the result would most probably
cause memory leakage. It is clearly necessary to try to avoid as many of these
temporaries as possible, if not all.

In MpIeee, a technique called delayed evaluation is used to avoid the need
for temporaries altogether. This technique, as its name indicates, consists in
delaying the operation until it knows the existence of a target object to store
the result. This is done using some interim object, called a proxy, which simply
stores references to the operands and an indication of the operation to which it
applies. The actual operation is then performed through a modified assignment
operator which takes this interim object as its operand. This way, the assignment
operator knows its target object (the left hand side of the operation) as well as
which operation needs to be performed on the given operands (the right hand
side of the operation). As such, the full computation can be executed without
the need for any temporary objects.

This technique can be completely implemented using inline functions, which
are almost always resolved at compile time when optimization settings apply.
Hence it is the fastest approach we can aim for. In the sequel MpIeee is therefore
our preferred multiprecision package. Besides being multi-radix and fast, it is
also the only one in its class offering full IEEE-854 compliance.

3 Precompiler for type conversion

With the exception of MPFUN, none of the high precision libraries comes with
a transcription program to automatically convert existing source code, using
standard precisions, into code that uses the multiprecision types of the library.
This problem is addressed now.

In [9] we describe an easy to use, generic C/C++ transcription program or
precompiler for the conversion of C/C++ source code into new code that uses a
C++ multiprecision library of choice. The precompiler can convert any type in the
input source code to another type in the output source code. The input source
can be C or C++, while the output code generated by the precompiler and using
the new types, is C++. The type conversion is based on a simple configuration
file, provided by the developer of the multiprecision library or by the user of the
precompiler.

During the transcription of the code, special care is taken with respect to
constants, among others to avoid the default conversion by the C++ compiler of
decimal literals to their standard double precision binary representation. Hence
constants need to be signaled to the user of the precompiler to make sure that
they are provided with sufficient accuracy. This can be guaranteed either by
string initialization from the decimal literal or by providing sufficiently accurate
representations in different radices for constants such as π, e, ln 2,

√
2,

The precompiler can be told to skip the conversion of certain variables, such
as the running variables in for-loops or even a complete function implementa-
tion. Use of the precompiler saves a lot of time and avoids errors that otherwise
easily occur in a manual conversion. At the same time, great care has been
taken to obtain precompiled code with performance similar to that of manually
converted code.

4 High precision matrix library

The basic Matlab type is a matrix. Several matrix libraries are freely avail-
able, among which MTL (Matrix Template Library), TNT (Template Numerical
Toolkit) and Boost. While MTL and TNT claim to be fully templated, in reality
the code still contains hard coded float, double and int variables. This renders
them useless when trying to generate a true multiprecision matrix library by use
of the above precompiler. Fortunately, Boost provides templated C++ classes for
several types of matrices: dense, sparse, triangular, banded, symmetric, hermi-
tian, etc. The library covers the usual basic linear algebra operations on vectors
and matrices and provides BLAS level 1, 2, 3 functionality.

Our matrix library is based on the templated Boost uBLAS routines and uses
our high precision data types implemented in the classes MpIeee, Rational and
BigInt as its data types. When different types are used in an expression, the
arguments are automatically converted to a predefined (larger) type unless the
cast operator is used to force conversion to a certain data type. The resulting
library is very time and memory efficient by using advanced template techniques

similar to the delayed evaluation techniques used by our own high precision
classes.

5 Matlab parser

MPL (Multi Precision Lab) implements a subset of the Matlab language but
has a superset of multiprecision types. Starting from Matlab scripts, our lexer
and parser construct an abstract syntax tree. This tree can then be interpreted in
our environment or compiled into C++ sources. In their turn, these C++ sources
can easily be compiled into standalone executables. These executables are faster
because no iteration in the abstract syntax tree is required.

Here is a short overview of the implemented subset:

– Block encapsulation: begin, end.
– Loops: while, for.
– Control structures: if, else, elseif, switch, case, otherwise, break.
– Input/Output: disp, print, println, input.
– Functions: function, return.
– Library loader: loadlibrary, calllib, unloadlibrary, libisloaded.
– Matrix creation: zeros, ones, eye.
– Complex variables: i, j.
– Built-in elementary functions: sin, sinh, asin, asinh, cos, cosh, acos,

acosh, cotan, cotanh, acotan, acotanh, tan, atan, tanh, atanh, exp, exp2,
exp10, log, log2, log10.

– Special constant values: Inf, inf, NaN.
– Built-in functions: transpose, colon (incl. range operations used in for-loops

etc.), inv, horzcat, vertcat, help, sqrt, pow, mod, rem.
– Relational operators : <, >, <=, >=, =, , ==, |, &, ||, && with same

precedence as Matlab.
– Arithmetic operations : +,−,∗,.∗,./,.\,∧,.∧ with same precedence as Mat-

lab.
– Cell array’s : basics implemented but not yet complete.

Subsequently, we extend the Matlab language with functions to alter the
current floating-point environment settings:

– mode: with an argument mpieee, rational, complex, double, int or logical
to specify the type.

– rounding: with an argument nearest, up, down, zero to specify the rounding.
– exponent: two arguments specifying the minimal exponent L and the max-

imal exponent U with L = 1− U .
– radix: one argument which sets the value of the radix.
– outputmode: one argument with a value between 1 and 13 for the different

output modes and 0 to reset the status flags.

Garbage collection is done using reference counting pointers. This is not as
efficient as for instance mark-and-sweep but for our purposes (especially for
compiling into readable C++ source code) it is the best option. Also we are able
to use the already available shared pointer from the Boost library. Due to the
nature of our language we do not have to worry about cycles in object pointers
and (inefficient) tracing routines to resolve them.

Strangely, generic memory management libraries do not seem to be freely
available. This is a pity because every garbage collecting language (such as Perl,
Python, Java, . . .) has to implement memory management schemes.

6 Runtime library loader

The runtime library loader LibLoader enables the loading of shared libraries
at runtime. This way the Matlab parser can be extended with various algo-
rithms selected from high precision precompiled versions of numerical libraries
of choice such as Numerical Recipes [10] and GSL [11]. An overview of the MPL
environment and more precisely how LibLoader fits in the picture, is shown in
Figure 1.

The implementation of LibLoader consists of various wrapper classes around
the free cross-platform libraries FFCall and GNU Libtool. We have to circumvent
compile time checking of types by using the void* pointer, since it is the only
way to pass class objects to functions that are loaded dynamically. Proper use of
the precompiler guarantees that the object types of the loaded library and the
types used in our interpreter and compiler are identical.

Another pitfall when loading arbitrary libraries and calling arbitrary routines
is the precise knowledge of the arguments and their dimension(s). Without this
information, no successful calls can be made without getting errors, or worse,
memory leaks. This is not surprising, since the same caution is required when
calling the routines from ordinary C/C++.

7 Interfacing to Numerical Recipes

Let us now describe how a multiprecision version of the Numerical Recipes li-
brary can be loaded into MPL. First, the precompiler is used to convert every
function file so that it uses a multiprecision type of choice. The precompiled
output files are then compiled and linked into a shared library. Unfortunately
some files do not link or corrupt the generated multiprecision library because of
the use of global or external variables. The shared library can then be loaded as
follows:

libname = ’/home/mpl/scripts/recipes’;
loadlibrary(libname);

However, loading the library at runtime causes MpIeee objects to use a sep-
arate environment. This environment has to be synchronized with the environ-
ment used inside the parser. Therefore one has to add two functions, called

Precompiler

GSL NR

Multiprecision libs

LibLoader

MPL parserMATLAB script

Output of
executionC++ source Compile?

MpIeeeCMpIeee intdouble string

Boost: uBLAS

Rational BigInt

YES NO
C++ compiler

Executable

Interpret

Fig. 1. Overview of MPL environment

getEnvironment and setEnvironment, to our shared library. These functions
are called before and after every call of a Numerical Recipes routine in order to
ensure that the correct internal representation is used. We can automate this by
placing these extra calls in an external function file:

% External function file callrecipes.m
function result = callrecipes(funcname, varargin)

libname = ’recipes’;

%copy current environment to library environment
calllib libname, ’setEnvironment’, MpIeeeEnvironment();

result = calllib libname, funcname, varargin{:};

%copy library environment back to current environment
calllib libname, ’getEnvironment’, MpIeeeEnvironment();

end

The actual call of a Numerical Recipes routine is then done by:

% actual calling of recipes routines
libname = ’/home/mpl/scripts/recipes’;
loadlibrary(libname);

if libisloaded(libname)
callrecipes ’rtflsp’, 8.8, 9.2, 1e-64
callrecipes ’rtflsp’, 8.8, 9.2, 1e-128 %higher precision
unloadlibrary(libname);

else
disp(’recipes not loaded’);

end

8 Interfacing to GSL

To call routines of the GSL library, we need to follow a slightly different approach.
We fine tune the conversion of GSL using the precompiler so that all double
and float instances in computations are replaced by a multiprecision type. The
variables used exclusively for array or matrix indexing are left untouched for
better performance. After this conversion we still cannot use the GSL routines
directly in the parser like we did with Numerical Recipes. The reason for this is
that GSL uses C structs and specific memory allocating calls like malloc for
the implementation of vector, matrix and interval types.

To map the types used in GSL to the types of the matrix library used in
the parser, we need interfacing wrapper functions. Here is a skeleton of such a
wrapper function:

#include <iostream>
#include "matrix.h"
#include <gsl/gsl_math.h> //gsl specific includes
#include <gsl/gsl_errno.h>
#include <gsl/gsl_roots.h>

void mexFunction(int nlhs, Matrix *plhs[], int prhs,
const Matrix *prhs[]){

// convert the Matrix arguments in prhs
// to needed structs defined in gsl.h

// make the call to the gsl routine, for example:
// bisection_iterate (void * vstate, gsl_function * f,
// MpIeee * root,
// MpIeee * x_lower,
// MpIeee * x_upper)

// copy returned value(s) into plhs
}

These wrapper functions are very similar to the Matlab mex functions. One
way to automate the construction of these wrapper functions is to use the SWIG
tool which is also used successfully by Python to import various libraries.

9 Example

We implement a remarkable example [12, 13] where all hardware precisions, even
quadruple precision, go wrong:

a = 77617;
b = 33096;
y = 333.75*b*b*b*b*b*b + ...

a*a * (11*a*a*b*b - b*b*b*b*b*b - 121*b*b*b*b - 2) + ...
5.5*b*b*b*b*b*b*b*b + a/(2*b)

This gives the wrong answer y = 1.1726 in Matlab 6.5 revision 13 on an Intel
Pentium 3 based system, as well as in MPL through mode(double). Setting the
radix and precision to 10 and 37 in MPL, by adding the commands

mode(mpieee);
precision(37);
radix(10);

the computed result for y is

y = -8.273960599468213681411650954798162920^-1

as it should be. MPL also allows a correct value for y to be computed in rational
arithmetic.

This example shows that it is very straightforward to go from hardware to
multiprecision using our MPL environment. All the functionality is also available
from within a cross-platform GUI: run scripts, set the radix, increase or decrease
the precision and exponent range, change the rounding modes and default types.

References

1. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Com-
puting. Springer Verlag, Berlin, Heidelberg (1995)

2. Bini, D., Fiorentino, G.: Design, analysis, and implementation of a multiprecision
polynomial rootfinder. Numerical Algorithms 23 (2000) 127–173

3. Granlund, T.: GNU MP: The GNU Multiple Precision Arithmetic Library. (2004)
4. Cuyt, A.: http://www.cant.ua.ac.be/arithmos/ (2004)
5. Haible, B.: CLN, a class library for numbers. (1997)
6. Smith, D.M.: Algorithm 693: A FORTRAN package for floating-point multiple-

precision arithmetic. ACM Trans. Math. Software 17 (1991) 273–283
7. Zimmermann, P., et al.: MPFR: a library for multiprecision floating-point arith-

metic with exact rounding. (2000)
8. Bailey, D.: A FORTRAN 90-based multiprecision system. ACM Trans. Math.

Software 21 (1995) 379–387
9. Schreppers, W., Cuyt, A.: A generic C/C++ precompiler. ACM Trans. Math.

Software (2004) submitted.
10. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes

in C++. Cambridge University Press, Cambridge (2002)
11. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M., Rossi,

F.: GNU Scientific Library Reference Manual. Second edn. Network Theory Ltd.
(2003)

12. Cuyt, A., Verdonk, B., Becuwe, S., Kuterna, P.: A remarkable example of catas-
trophic cancellation unraveled. Computing 66 (2001) 309–320

13. Rump, S.: Algorithms for verified inclusions - theory and practice. In Moore, R.,
ed.: Reliability in Computing. (1988) 109–126

